statistics/심리통계학의 기초

t검증과 F검증의 차이

반찬이 2008. 2. 3. 22:06

검증은 두 집단의 차이를 검증하지만, ANOVA는 세 집단 이상의 차이를 검증할 때 사용된다. 만일 연구자 세 집단(A, B, C)의 차이를 검증하기 위해 검증을 세 번 한다고 할 때, 비교되는 쌍만큼의 1종 오류가 증가한다. 1종 오류의 발생은 받아들여야 할 영가설(귀무가설)을 기각할 확률이므로 1종 오류의 증가는 매우 심각한 결과를 가져온다. 즉 통계적으로 유의미하지 않은 결과를 유의미한 것으로 해석하는 오류를 범하게 된다.

예를 들어, 집단 A와 B, A와 C, B와 C를 연속으로 검증할 때 1종 오류는 그만큼 증가한다. 여기서 세 번의 비교가 되므로 유의수준 .05를 사용하여 의사결정을 할 때, 즉 1-(.95)3=1-.857=.143(14%)의 오류를 범하게 된다. 다시 말해, ANOVA를 수행해야 할 데이터를 검증을 수행하면 약14% 정도의 통계적 의사결정에서의 오류를 범하게 되는 것이다.

ANOVA는 변량(variance)의 차이를 검증하는 방법으로 Fisher에 의해 제안된 F분포에 의한 통계치를 산출한다. F분포의 일반적인 특징은 다음과 같다.

- F분포는 두 개의 표본에서 추정된 변량의 비이다.

- F분포는 연속 확률 분포로서 분자와 분모 각각 두 개의 자유도를 갖는다.

- F분포는 항상 양의 값을 가지며 0의 방향으로 편포한(한 쪽으로 치우친) 비대칭형 분포이다.