statistics/심리통계학의 기초

경향분석이란 무엇인가?

반찬이 2008. 7. 15. 08:00

경향분석(trend analysis)은 여러 개의 실험집단 평균들 사이의 특정한 양상(직선형 혹은 곡선형)을 파악하기 위한 분석이고, 독립변인의 수준들이 서열적인 혹은 연속적인 의미를 가지는 경우에 많이 수행된다. 예를 들어, 독립변인이 학년 혹은 연령대인 경우에 수행된다. 경향분석을 하는 예를 들자면,

인스턴트 커피 제조회사에서 커피에 첨가되는 설탕의 적정량을 파악하기 위해 10명을 대상으로 선호실험을 계획했는데, 그 결과,

설탕 g 수

1g

3g

5g

7g

9g

선호도 평균

5

8

6

4

1

나왔다고 하면, 설탕의 양이 증가하면서 선호도도 증가하다가 감소하는 양상을 볼 수 있다. 이처럼, 경향분석은 독립변인의 값이 증가하면서 변화하는 종속변인의 값이 직선형적인(linear) 경향을 가지고 변화하는지, 아니면 곡선형적인(curvilinear) 경향을 가지고 변화하는지를 파악하기 위한 분석이다.

따라서, 경향분석은 독립변인의 수준들이 서로 서열적인 관계를 가지거나 양적인 의미를 가지는 경우에 그 독립변인과 종속변인 사이의 관계의 양태를 규명하기 위한 분석이다.

 

수업시간중에 한 것) 경향분석은 othogonal contrast를 응용한 것으로 변인의 성격이 범주변인의 성격이 아니라면, 거기에 대한 수준이 달라짐에 따라 어떤 경향을 보이는가를 살펴보는 것이다. 경향분석을 통해 변인들간의 관련성이 어떤 경향을 보이는가를 보는 것인데, 변인값이 3개이면, 1,2차 함수를 볼 수 있고, 변인값이 4개이면 1,2,3차 함수를 볼 수 있다. 변인의 수준이 4개라고 하더라도 1차함수로 해석될 때도 있고, 2차함수로도 해석될 때도 있다.

예)

본인의 가설이 1차함수로 했는가? 2차함수로 했는가에 따라 그에 맞춰 해석될 수 있다. 아니면, F값의 유의도 값이 더 별이 많이 뜨는 쪽으로 해석하기도 한다.

 

1) 독립변인이 세 수준이상일 때

2) 독립변인이 범주변인이 아닐 때(최소한 서열변인). 경향분석을 한다.

 

이건 사전비교는 아닌 사후비교이지만, othogonal contrast를 (사전비교의 원리를) 응용한 것이다.